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ABSTRACT
Interactive visualization of large flow data sets

requires new methods that are fast, can be run in parallel,
and are interactive. In this paper we propose a method
based on the use of color and local pattern matching.  The
pattern matching is inspired by the marching cubes
algorithm for scalar field visualization. For flow
visualization, there are many more patterns, but at least
for two-dimensional flow, the number of cases is
manageable. For three-dimensional flow, using a subset
of the cases can produce informative visualizations. We
show results on both data from global ocean circulation
models and from artificial data sets.

INTRODUCTION
Visualization of flow data is one of the most

important applications of scientific visualization. In spite
of many years of research in the area and the development
of a variety of methods, including streamlines [9], stream
tubes [3], and line integral convolution (LIC) [1], none of
the present techniques are adequate for dealing with large
data sets.

In this paper, we are concerned with visualization of
the large data sets that can arise in applications such as
ocean and climate modeling. In such problems, we can
have flow data over a three-dimensional grid consisting of
109 points. Data may be computed or measured daily, or
hourly, for periods of up to 100 years [10].

Clearly such problems present a host of difficulties,
which range from the amount of computation required, to
the volume of data stored, to data interpretation. From the
visualization perspective, however, we need to think
about interactive techniques that can be used for data
exploration because it will not be possible to process
every datum in each data set. We must seek methods that
are hierarchical and can be made interactive, thus
allowing the scientist to identify areas of interest rapidly.
Once identified, these regions can then be explored later
by slower more detailed methods. Just as clearly, we must
use methods that are local and can be adapted to run in
parallel.

Standard methods such as streamlines and LIC
cannot easily be made useful for these applications.
Problems include difficulties in parallelization,
computational requirements and visual clutter.

A similar analysis holds for visualizing large scalar
volumes. Although direct rendering methods, such as ray
tracing, can produce informative images, these techniques
require an enormous amount of computing and cannot be
used interactively. Typically, such techniques require a
complete recalculation of the output image for each
motion of the object or change in the view. Hence,
isosurface methods, which do not image all the data but
are computationally efficient, are very popular.

Of the isosurface methods, marching cubes [8] is the
dominant algorithm. It is local, looking only at a datum
and its closest neighbors, and can be easily adapted to run
in parallel. Moreover, it requires very little computation
as it uses tables to recognize patterns in the data.

Our proposed method is inspired both by marching
cubes and by the importance of color to human pattern
recognition. Our method is based upon looking at the
direction of flow at a point and its immediate neighbors.
Considering symmetries in the patterns, we can reduce the
total number of cases that must be considered. We allow
the user to select which types of cases to view. For
example, clustering cases by considering only the
direction of flow results in a small number of distinct
cases at each point. These cases can be encoded into
colors.

This paper is organized as follows. First, we examine
a combinatorial approach based only on the direction of
flow, if the magnitude of the flow exceeds a user-
determined threshold, at a point and its neighbors. We
consider ways of classifying these cases. Then we show
how we can display subsets of the cases using color
encoding. Next, we present results for data from ocean
circulation simulations and a mathematical function.
Finally, we consider extensions from two- to three-
dimensional flow.

MARCHING FLOW
Consider typical flow data on a structured grid. We

can consider the flow in either two or three dimensions.
For now, we will consider two-dimensional flow for
clarity and will consider the modifications that we have to
make for three dimensions later. We have an n x m array
of two-dimensional vectors, the value of each vector
determining the flow direction and magnitude at that cell.

If we look at a single cell and consider only the
principle component of the flow vector we can assign one
of four directions to the cell, as in Figure 1. We shall also



use O to denote a cell in which the magnitude of the flow
is less than some threshold. If we look at the cell and its
four neighbors as in Figure 2, we can identify 3125 (= 55)
patterns between the cell and its neighbors. Some of these
patterns are shown in Figure 3 for simple flow conditions.
For comparison, marching cubes starts with 256 cell
patterns.

Figure 1: Five flow cases.

Figure 2: Center cell and four neighboring cells.

Figure 3: Some example flow patterns.

However, just as with marching cubes we can
recognize symmetries in the patterns. For example, all the
patterns in Figure 4 are equivalent in that they are
characteristic of flow in one direction. These patterns can
be computed as we march through the data set, thus
leading to our naming this method marching flow.

Figure 4: Equivalent flow patterns flowing in a single
direction.

Figure 5: Symmetric patterns of flow.

Unlike marching cubes, in which all the cell
configurations, other than the two trivial cases, generate a
piece of the isosurface passing through the cell, here it is
not clear how we should interpret and display the patterns.
For example, although the four patterns in Figure 5 are
symmetric, we may want to display each with a different
color if we want to visualize the direction of flow. If we
are interested only in whether or not the magnitude of the
flow exceeds some magnitude over a small region, we
might display these patterns in the same manner. Hence,
although we recognize the rotational symmetry, we want

to count these as four distinct cases and decide how to
display them later.

Figure 6: Removed symmetries.

However, if we count the patterns in Figure 5 as
distinct cases, we will generate a large number of patterns
even if we remove rotational symmetries and symmetries
in the type of flow as in Figure 6. Here, we might argue
that the two patterns on the right are equivalent, as are the
two patterns on the left. However, this reasoning leads,
for example, to 17 “distinct” cases in which there is no
flow in three of the five boxes. For four and five boxes
that have some sort of arrow, the number of patterns is so
large that it does not lead to a simple program for
implementing the method. In addition, with this approach
it is difficult to distinguish between cases that are
important and cases that probably will never appear in a
data set, as they may make no sense physically. For
example, the patterns in Figure 7 are unlikely to be
important in any real application.  However, it would help
to start with a simple classification scheme. Suppose that
we use an O to denote flow with a magnitude below some
threshold and an X to denote any of the four flow
directions. This simple classification yields the 12 unique
patterns shown in Figure 8.

Figure 7: Improbable flow patterns.

Figure 8: General flow cases.

Nevertheless, a typical implementation must use the
direction of flow and distinguish between important and
unimportant, or physically impossible, cases. We found it
useful to start with the cases that have the most coherence
between the arrows. The first cases that we consider are



the ones with five arrows, all pointed in the same
direction as in Figure 5. Next we consider, all the cases
with four arrows in the same direction. In a typical
application, we might choose to treat these patterns in the
same way as those where all five arrows are aligned. We
then move to cases with three aligned arrows and so on.
The advantage of this sieve-like algorithm is that it allows
us to treat the symmetries in an orderly fashion without
creating a complex table of cases.

The idea of displaying patterns is actually an old one.
Klassen [7] assigned small arrow patterns as black dots in
a small white box. Although their work showed the
coherence that could be seen from the directions, the loss
of resolution did not lead to a viable method, especially
when high-resolution color displays became available.

COLOR ASSIGNMENT
Generally, we would like to decide interactively,

through some sort of user interface, which patterns we
would like to display. Our display technique is to assign a
unique color to each data point so that we do not lose
resolution.

A simple display technique would be to display
“strong flows” by display of those patterns that have a
high degree of coherence with three or more aligned
arrows. If we are looking for sources or sinks, we might
display only those patterns where there are opposing
arrows. But in other applications, we are looking for
particular patterns.

Our base method of color assignment is to use a
small set of carefully chosen colors. These colors should
obey some standard practices to ensure compatibility with
properties of the human visual system [4][6]. In
particular, we want to choose highly saturated colors but
we do not want opposing colors to be adjacent. For
example, a basic display pattern would be to use color to
show direction of flow. We might color all cases in which
three or more arrows point in the same direction with the
same color. If we were to choose colors equally spaced on
the color wheel, we might have red opposite yellow and
green and blue almost opposite. On a perceptual basis, we
are better off if we use red/green and blue/yellow for the
opposite directions. If we want to display more than four
types of patterns we tend to select colors that are far from
blue/green/yellow/red in color space and include colors
such as black, white, brown, and gray.

EXAMPLE: VISUALIZING OCEAN FLOW
The problem that motivated this work is the

visualization of flows in the ocean from simulation data.
Prediction of global climate is one of the grand challenge
problems. Global ocean models have been increasingly
sophisticated over the last 20 years. These models now
compute a resolution of 1/10 degree, which means there
are 3600 points around the equator. Although there is
some scaling that reduces the number of points needed at
the poles we have two-dimensional data sets that consist

of approximately ten million points.  At each of these
points, we might have values for the flow, temperature
and salinity.

While surface models with two spatial dimensions
and time are important in many studies, many others
require three spatial dimensions. One of the major
problems is the study of thermohaline circulation patterns.
Because salt heavy water drops and warmer water rises,
there are circulation patterns that must take into account
the depth of the ocean. The latest models use 80 levels in
depth, in addition to the 1/10 degree resolution along the
surface. Because these thermohaline circulation patterns
involve slow flows, oceanographers are interested in
modeling these patterns over periods measured in the tens
of years. In addition, some of the most important features
of these flows are small branches of flow that leave the
large current circulating the Antarctic.

One of the problems in displaying this type of data is
that we want to show both land masses, patterns of flow,
and areas of small flow. Generally this requirement forces
us to use two colors, sometimes black and white, for the
land and low-flow regions.

Color Plate 1 shows a visualization of flows in the
North Atlantic. The data set is 1152 x 1280 and shows the
flows on the surface layer. Here we encode land as gray
and encode the patterns with five arrows all pointing in
the same directions as red for right-moving flows, green
for left-moving flows, blue for downwards flows, and
yellow for upwards flows. The pattern of all zeros,
corresponding to all vectors below threshold, is encoded
as white.

One question that arises is whether or not this display
conveys any more information than simply encoding the
flow at each point using same color scheme [2].  For this
choice of patterns, the major difference is that with
marching flow we see distinct outlines at the borders
between flow of different directions and between flows
that are above and below a user selected threshold flow.

Color Plate 2 shows a different visualization of the
same data set where different patterns are assigned the
most distinct colors. All the coherent patterns are gray; all
the low flow data are white; red shows coherent regions
with three arrows in the same direction; green shows all
the other cases, which include patterns with opposing
flow and patterns with only two arrows in the same
direction. This color assignment acts as an edge detector
highlighting points where the flow changes or disappears.

EXAMPLE: MANDELBROT SET
The next example shows the advantages of marching

flow for detecting complex patterns rather than coherent
flows. The data are from the Mandelbrot set in which we
have a complex number at each spatial location. For
visualization purposes, we treat each complex number as
a two-dimensional “flow” vector. In Color Plate 3, we
show the flow encoded as in Color Plate 1 which shows a
recognizable Mandelbrot set displayed in an unusual



manner. For Color Plate 4, we adopted the following
color scheme:

red = opposing flow
blue = sink
yellow = source
gray = coherent cases
black = all other cases

Here we define opposing flow as a point in which
there are different arrow directions among the point and
its neighbors. A sink is place where the flow is below
threshold at the point but the neighbors have one or more
arrows pointing inward. A source is the opposite of a sink.
Coherent flow includes those cases in which all the
arrows point in the same direction.

THREE-DIMENSIONAL FLOW
In principle, we should be able to extend marching

flow to three-dimensional flow problems without much
difficulty. However, there are practical problems. In three
dimensions, each point has 6 neighbors. If we classify
flows as before, there are 7 choices for the point and its
neighbors, resulting in 77 or 823543 patterns. Although
there are symmetries and we could write a program to
classify these patterns, it is not clear this would be a
useful approach. Rather, we can proceed as with two-
dimensional flow and classify patterns starting with the
most coherent arrows and providing a user interface that
allows selection of patterns.

CONCLUSIONS
Color methods have much to recommend them for

visualizing large flow data sets, especially as part of a
hierarchical process. They are fast, well-suited to
properties of the human visual system, and easy to
parallelize. The question is whether marching flow is
better than direct color methods that do not make use of
neighboring data points.

We argue that there are advantages. The marching
flow method highlights changes in the flow patterns. This
is analogous to the use of edge detectors in image
processing.  Although edges are in images, once they are
displayed alone or enhanced in the original image, more
information is conveyed to the user. For flows the
situation is more complex as we are often interested in
places where there is a source or a sink or places where
there is turbulence. By choosing which patterns we
display, we can offer the user a variety of displays, which
should prove useful for interactive visualization of large
flow data sets.

A final important point is to note that this method is
not limited to just flow visualization, but may be applied
to any vector data set.
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Color Plate 1: North Atlantic flows on surface layer.
Coherent flow shown by color:

 red = right, blue = down,
green = left, yellow = up,

gray = land,
white = below threshold

Color Plate 2: Edge detection for North Atlantic flows
using the following color encoding scheme:

gray = coherent patterns,
white = low flow,

red = coherent regions (3 arrows in same direction);
green = all the other cases.

Color Plate 3: Mandelbrot set using color-encoding scheme
of Color Plate 1.

Color Plate 4: Close-up of Mandelbrot set using the
following color encoding scheme:

red = opposing flow,
blue = sink,

yellow = source,
 gray = coherent cases,
black = all other cases.
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